skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yamani, Yusuke"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 6, 2026
  2. Abstract Real-world work environments require operators to perform multiple tasks with continual support from an automated system. Eye movement is often used as a surrogate measure of operator attention, yet conventional summary measures such as percent dwell time do not capture dynamic transitions of attention in complex visual workspace. This study analyzed eye movement data collected in a controlled a MATB-II task environment using gaze transition entropy analysis. In the study, human subjects performed a compensatory tracking task, a system monitoring task, and a communication task concurrently. The results indicate that both gaze transition entropy and stationary gaze entropy, measures of randomness in eye movements, decrease when the compensatory tracking task required more continuous monitoring. The findings imply that gaze transition entropy reflects attention allocation of operators performing dynamic operational tasks consistently. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  3. The implementation of automation will enable Advanced Air Mobility (AAM), which could alter the human's responsibilities from those of an active controller to a passive monitor of vehicles. Mature AAM operations will likely rely on both experienced and novice operators to supervise multiple aircraft. As AAM constitutes a complex and increasingly autonomous system, the human operator's set of responsibilities will transition from those of a controller, to a manager, and eventually to an assistant to highly automated systems. The development of AAM will require system designers to characterize these three sets of human responsibilities. The present work proposes different human responsibilities across various roles (i.e., pilot in command, system operator, system assistant) in the context of AAM along with pertinent attention-related constructs that could contribute to each of the three identified roles of AAM operators including situation awareness, workload, complacency, and vigilance. 
    more » « less
  4. ObjectiveThis study examined the impact of monitoring instructions when using an automated driving system (ADS) and road obstructions on post take-over performance in near-miss scenarios. BackgroundPast research indicates partial ADS reduces the driver’s situation awareness and degrades post take-over performance. Connected vehicle technology may alert drivers to impending hazards in time to safely avoid near-miss events. MethodForty-eight licensed drivers using ADS were randomly assigned to either the active driving or passive driving condition. Participants navigated eight scenarios with or without a visual obstruction in a distributed driving simulator. The experimenter drove the other simulated vehicle to manually cause near-miss events. Participants’ mean longitudinal velocity, standard deviation of longitudinal velocity, and mean longitudinal acceleration were measured. ResultsParticipants in passive ADS group showed greater, and more variable, deceleration rates than those in the active ADS group. Despite a reliable audiovisual warning, participants failed to slow down in the red-light running scenario when the conflict vehicle was occluded. Participant’s trust in the automated driving system did not vary between the beginning and end of the experiment. ConclusionDrivers interacting with ADS in a passive manner may continue to show increased and more variable deceleration rates in near-miss scenarios even with reliable connected vehicle technology. Future research may focus on interactive effects of automated and connected driving technologies on drivers’ ability to anticipate and safely navigate near-miss scenarios. ApplicationDesigners of automated and connected vehicle technologies may consider different timing and types of cues to inform the drivers of imminent hazard in high-risk scenarios for near-miss events. 
    more » « less